The open state gating mechanism of gramicidin a requires relative opposed monomer rotation and simultaneous lateral displacement.
نویسندگان
چکیده
The gating mechanism of the open state of the gramicidin A (gA) channel is studied by using a new Monte Carlo Normal Mode Following (MC-NMF) technique, one applicable even without a target structure. The results demonstrate that the lowest-frequency normal mode (NM) at approximately 6.5 cm(-1) is the crucial mode that initiates dissociation. Perturbing the gA dimer in either direction along this NM leads to opposed, nearly rigid-body rotations of the gA monomers around the central pore axis. Tracking this NM by using the eigenvector-following technique reveals the channel's gating mechanism: dissociation via relative opposed monomer rotation and simultaneous lateral displacement. System evolution along the lowest-frequency eigenvector shows that the large-amplitude motions required for gating (dissociation) are not simple relative rigid-body motions of the monomers. Gating involves coupling intermonomer hydrogen bond breaking, backbone realignment, and relative monomer tilt with complex side chain reorganization at the intermonomer junction.
منابع مشابه
Gating gramicidin channels in lipid bilayers: reaction coordinates and the mechanism of dissociation.
The dissociation of gramicidin A (gA) channels into monomers is the simplest example of a channel gating process. The initial steps in this process are studied via a computational model that simulates the reaction coordinate for dimer-monomer dissociation. The nonbonded interaction energy between the monomers is determined, allowing for their free relative translational and rotational motion. L...
متن کاملFemur rotation and patellofemoral joint kinematics: a weight-bearing magnetic resonance imaging analysis.
STUDY DESIGN Controlled laboratory study using a cross-sectional design. OBJECTIVES To compare patellofemoral joint kinematics, femoral rotation, and patella rotation between females with patellofemoral pain (PFP) and pain-free controls using weight-bearing kinematic magnetic resonance imaging. BACKGROUND Recently, it has been recognized that patellofemoral malalignment may be the result of...
متن کاملDevelopment of Mathematical Model for Controlling the Drilling Parameters with a Screw Downhole Motor
Article presents results of study on possibility of increasing the efficiency of drilling directional straight sections of wells using screw downhole motors (SDM) with a combined method of drilling with rotation of drilling string (DS). Goal is to ensure steady-state operation of SDM with simultaneous rotation of DS by reducing the amplitude of oscillations with adjusting the parameters of dril...
متن کاملEffect of Gating Modifier Toxins on Membrane Thickness: Implications for Toxin Effect on Gramicidin and Mechanosensitive Channels
Various gating modifier toxins partition into membranes and interfere with the gating mechanisms of biological ion channels. For example, GsMTx4 potentiates gramicidin and several bacterial mechanosensitive channels whose gating kinetics are sensitive to mechanical properties of the membrane, whereas binding of HpTx2 shifts the voltage-activity curve of the voltage-gated potassium channel Kv4.2...
متن کاملEnvironment of the gating charges in the Kv1.2 Shaker potassium channel.
Recently, the structure of the Shaker channel Kv1.2 has been determined at a 2.9-angstroms resolution. This opens new possibilities in deciphering the mechanism underlying the function of voltage-gated potassium (Kv) channels. Molecular dynamics simulations of the channel, embedded in a membrane environment show that the channel is in its open state and that the gating charges carried by S4 are...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Structure
دوره 14 8 شماره
صفحات -
تاریخ انتشار 2006